AI GLOSSARY
Concept Drift
Concept drift occurs when the relationship between the input data and the target value changes in some way, potentially making the model inaccurate or unreliable. Concept drift can lead to a decline in the model’s accuracy because it was trained on data that no longer reflects the current patterns or relationships. Handling concept drift is essential in dynamic environments, such as financial markets or user behaviour prediction, where conditions evolve continuously.
6 min read
The Business of AI in UK Defence and National Security
by Al Bowman
While the technical aspects of an AI system are important in Defence and National Security, understanding and addressing AI business considerations...
4 min read
The 8-Step Guide to Deploying Machine Learning in Infrastructure
by Kimberly Joly
The adoption of AI and Machine Learning is complex, and attempting it in civil engineering can feel daunting. This guide outlines the 8 steps...
Stay connected
News, announcements, and blogs about AI in high-stakes applications.